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Population-based studies have found that

obesity is an important and independent

risk factor for hospitalization, ICU admis-

sion, and fatal outcome in individuals

with coronavirus disease-19 (COVID-19)

(Drucker, 2021).We readwithgreat interest

the recent publication in Cell Metabolism

that provided evidence that SARS-CoV-2

(the virus that causes COVID-19) infection

of adipocytes could trigger adipose tissue

dysfunction and insulin resistance (Reiterer

et al., 2021). This notion is supported by

clinical data showing higher C-peptide

concentrations and lower levels of the

adipocyte-derived hormone adiponectin

in individuals with COVID-19. To address

a roleof adipose tissuedysfunction caused

by the virus, the authors studied SARS-

CoV-2 infection in golden Syrian hamsters,

an excellent animal model of COVID-19

(Siaetal., 2020). Importantly, theydetected

viral RNA and low adiponectin expression

in hamster adipose tissue post infection,

which may explain deteriorated metabolic

homeostasis associated with SARS-CoV-

2 infection (Reiterer et al., 2021). However,

the studydid not provide direct evidenceof

SARS-CoV-2 dissemination to adipose tis-

sue in humans.

Here, we have extended the previous

study by measuring SARS-CoV-2 RNA in

adipose tissues, lung, and liver from 18

male and 12 female individuals who died
from COVID-19 (Table S1). SARS-CoV-2

was found in at least one adipose tissue

depot in 10 of the 18 male individuals.

Although our study was not sufficiently

powered for a conclusive statistical anal-

ysis, it is of note that the virus was found

only in adipose tissue of male individuals

whowere overweight (BMIR 25) or obese

(BMI R 30). It is also notable that in four

males all with a BMI R 30, SARS-CoV-2

RNA was additionally detected in liver

samples, suggesting that hepatic fat

accumulation frequently observed in

obese individuals might additionally sup-

port SARS-CoV-2 replication in the liver.

In 5 of the 12 female individuals, SARS-

CoV-2 was detected, but with no clear

correlation between BMI and virus

mRNA levels. The expression of the

SARS-CoV-2 receptor angiotensin-con-

verting enzyme 2 (ACE2) was reported to

be higher in adipose tissue of individuals

with obesity compared with lean individ-

uals (Ledford, 2020). In our study, howev-

er, no clear correlation between BMI,

adipose ACE2 expression, and SARS-

CoV-2 was observed (Table S1). Alto-

gether, we provide direct evidence that

adipose tissue depots, especially from

male individuals with obesity, are suscep-

tible to SARS-CoV-2 infection.

The study of Reiterer et al. showed

replication of SARS-CoV-2 in cultured ad-
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ipocytes, but without examining the rele-

vance of adipocyte differentiation status

for virus replication. We, therefore, per-

formed infection experiments with human

mesenchymal stem cells that were differ-

entiated into mature adipocytes (Prawitt

et al., 2008). After inoculation, we de-

tected efficient multi-cycle replication of

SARS-CoV-2 by determining infectious

titers in the supernatants, whereas

influenza A virus (H1N1) used as a control

did not propagate in adipocytes

(Figure S1A). Importantly, ACE2 expres-

sion was strongly induced upon

adipocyte differentiation (Figure S1B).

Consistent with this finding, efficient

SARS-CoV-2 replication was only de-

tected in lipid-laden adipocytes prior to

infection, but not in adipocyte precursor

cells or immature adipocytes (Figure

S1C). In addition, we provide mechanistic

insight that lipid droplet metabolism is

critical for SARS-CoV-2 propagation, as

blocking lipid breakdown using the lipase

inhibitor tetrahydrolipstatin reduced viral

replication by 100-fold in mature adipo-

cytes (Figure S1D). Notably, concomitant

administration with atorvastatin further

suppressed replication (Figure S1D),

which could be explained by drug-medi-

ated lowering of ACE2 expression

(Figure S1E). Together, these mechanistic

studies provide the rationale for a novel
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treatment strategy targeting SARS-CoV-2

propagation.

The study by Reiterer et al. showed

clear evidence for adipose tissue infection

with SARS-CoV-2 in hamsters. The au-

thors focused on endocrine factors

released by adipocytes; however, they

did not explore infection kinetics or the

consequences on adipocyte and sys-

temic lipid metabolism. In our experi-

ments, we detected infectious viral titers

of SARS-CoV-2 in adipose tissues on

days 1 and 3 post-infection, whereas no

virus particles were present on day 6

(Figure S1F). The complete clearance of

the virus from adipose tissue by day 6

indicated a proficient innate immune

response. In line with this notion, a

massive, transient induction of the clas-

sical type 1 interferon response gene

Isg15 was observed on day 3, but not on

day 6, in adipose tissues (Figures S1G

and S1H).

It is of note that, for yet unknown rea-

sons, disease progression is highly vari-

able among individuals with COVID-19.

To identify risk profiles that predict the

severity and outcome, a previous series

of unbiased metabolomics studies found

characteristic metabolite signatures in

plasma that distinguish mild from severe

disease states (Casari et al., 2021). For

instance, higher levels of plasma free fatty

acids are observed in individuals with

COVID-19 compared with controls, sug-

gesting higher basal lipolysis of triglycer-

ides in adipose tissue (Thomas et al.,

2020). Fatty acids released by adipose

tissue include exogenous ones originally

derived from the diet and such originating

from endogenous synthesis. The latter

metabolic pathway, termed de novo lipo-

genesis (DNL), is highly active in adipose

tissue and is regulated mainly at the tran-

scriptional level. Notably, the N-terminal

non-structural protein 1 of beta-coronavi-

ruses including SARS-CoV-2 has been

shown to suppress host gene expression

(Thoms et al., 2020). Thus, it is conceiv-

able that viral infection not only reduces

adiponectin expression, as shown by Re-

iterer et al., but also affects the expression

of genes that regulate adipocyte lipid

metabolism. Indeed, we observed that

the expression levels of the key DNL en-

zymes Acaca, Acly, and Fasn were sub-

stantially lower in adipose tissues of

SARS-CoV-2-infected hamsters (Figures

S1I and S1J). This effect was not
2 Cell Metabolism 34, January 4, 2022
observed in controls treated with

poly(I:C), arguing against the possibility

that the induction of the type 1 interferon

response is responsible for the reduced

expression of lipid-related genes. To

address whether this profound regulation

affects systemic metabolite levels and

lipid homeostasis, metabolomic analysis

was performed in plasma samples of

SARS-CoV-2-infected hamsters and indi-

viduals with COVID-19 (Figures S1K–

S1M). Remarkably, the most significant

inductions were found for triglyceride

species enriched in polyunsaturated fatty

acids (PUFAs) at days 3 and 6 post-infec-

tion (Figure S1L). In contrast and consis-

tent with reduced expression of DNL

genes in adipose tissues, triglycerides

containing typical DNL-related fatty

acids, including saturated fatty acids

(SFAs) and monosaturated fatty acids

(MUFAs), were profoundly reduced

(Figure S1L). In humans, we found a trend

toward higher triglycerides in the plasma

of individuals with COVID-19 compared

to a control cohort (Figure S1M). Of

note, metabolomic analyses revealed

that triglyceride species containing DNL-

derived SFAs and MUFAs were lower in

the plasma of individuals with COVID-19

(Figure S1N).

Extending the results of Reiterer et al.,

we show here that SARS-CoV-2 infection

of adipose tissue profoundly affects organ

and systemic lipid metabolism in ham-

sters and humans.
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